

Xvisio_SDK_Guide

v1.2/ 2022.03

Xvisio Confidential

Copyright and Proprietary Information Notice

Copyright © 2018 Xvisio Ltd. All right reserved. This document

contains confidential and proprietary information that is the

property of Xvisio Ltd. All other product or company names may

be trademarks of their respective owners.

Xvisio Ltd.

Room 408, building 1, No.288, Tong Xie Road, Changning District,

Shanghai

http://www.Xvisiotech.com

http://www.xvisiotech.com/

Revision History

Version Description Author
1.0 First version Xvisio

1.1 XVSDK 3.0.2 Xvisio
1.2 XVSDK 3.1.0 Xvisio

 Contents

1. Overview ... 5

2. Environment Construction for Xvisio SDK ... 5

2.1 Android SDK Environment Construction .. 5

2.1.1 Android SDK Structure ... 5

2.1.2 Android Box Requirements ... 6

2.1.3 Android Environment Test Verify ... 6

2.2 Windows SDK Environment Construction .. 7

2.3 Ubuntu SDK ... 13

3. Xvisio SDK Development ... 16

3.1 Xvisio Slam ... 16

3.1.1. Slam Mode Settings .. 16

3.1.2. Slam Center Point ... 16

3.1.3. 6dof Structure ... 17

3.1.4. Get 6dof .. 18

3.2 VIO Mode ... 20

3.3 CSLAM Mode .. 20

3.4 3DOF（Rotation） ... 25

3.5 Plane Detection (TOF/stereo) ... 25

3.6 Map Sharing .. 27

3.7 HID interfaces ... 28

3.8 Calibration Parameter API .. 28

3.9 HOT Plug .. 29

3.10 Get Fisheye Data ... 29

3.11 Get RGB Data ... 30

3.12 Get TOF Data .. 30

3.13 Get RGBD Data .. 31

3.14 CNN .. 31

3.15 Gesture Function ... 33

3.16 Get SGBM Data .. 35

3.17 Python-wrapper ... 36

1. Overview

This document describes as a user guide of Xvisio SDK which mainly used to help

developers to know Xvisio SDK well and also can develop related applications (slam,

camera, audio...) quickly. This document is mainly divided into two parts: SDK

environment construction and sample code introduction.

Currently Xvisio SDK supports 3 platforms: Android, Ubuntu and Windows. The

mainly difference between these 3 platforms is that .so is compiled separately, but API

is the same. Section 2 introduces how to install/use Xvisio SDK with these 3 platforms.

Section 3 describes how to call the SDK API to achieve different functions for all

platforms.

2. Environment Construction for Xvisio SDK

This chapter sequentially introduces how to install and use Xvisio SDK on Android,

Ubuntu and Windows platforms. And also related precautions are included.

2.1 Android SDK Environment Construction

2.1.1 Android SDK Structure

Android SDK structure is shown as below:

Figure2-1 SDK Structure

The folder "Android" contains the makefile compiled by NDK. If user modify the

demo code in the samples folder, user can use "ndk-build -j 5" to compile and generate

the corresponding executable file. The compiled file path is in /Android/libs/ arm64-

v8a (armeabi-v7a).

File “bin” is the tool of 64bit and 32bit.

File “doc” contains definition file of class and interfaces.

Folder “examples” is our demo code, mainly describes how to use our SDK API.

The "include" folder is the header file of the SDK API.

The folder “libs” contains "SDK so" files. "arm64-v8a" is a 64bit library, and "armeabi-

v7a" is a 32bit library.

"deploy.sh" is a push script file. Executing "./deploy-arm64-v8a.sh" will push the

64bit library to the Android platform; executing "./deploy-armeabi-v7a.sh" will push

the 32bit library to the Android platform, Modify the "libdir" in deploy.sh to modify

the push lib path.

2.1.2 Android Box Requirements

⚫ The Android OS version should be above (include) 7;

⚫ Developers need to confirm that the Android kernel supports HID and UVC

modules first. If not, kernel needs to be recompiled and also add HID&UVC

modules should be added;

⚫ Android OS is userdebug version;

⚫ If only slam function is needed, usb2.0 can satisfy the demand. For complete

functions (slam, RGB, TOF, audio), usb3.0 is needed.

2.1.3 Android Environment Test Verify

We took Android native system box as an example to introduce how to test and verify

Xvisio Android SDK.

Connect the box with PC after powered on. Execute the following commands to push

Xvisio SDK to box:

⚫ adb root

⚫ adb remount

⚫ cd android_xxx_sdk

⚫ adb push libs /data/test/

⚫ adb push bin /data/test/

Execute the following commands after connecting:

lsusb (make sure whether the device can be found. if the terminal shows f408 which

means the device has been connected with box successfully.)

adb shell

cd /data/test/bin/arm64-v8a/

LD_LIBRARY_PATH=../../libs/ arm64-v8a/ ./demo-api

Open a new terminal: adb shell，cd /data/test/bin/arm64-v8a/，

LD_LIBRARY_PATH=../../libs/ arm64-v8a/ ./pipe_srv

The test verification steps of Android SDK is to refer to the test command and input

the command successively (input 1 to obtain 3DOF data, input 2 to obtain 6DOF data...)

If the 3dof, 6dof and other sensor data can be obtained normally in the end which means

there is no problem with the Android environment, and subsequent developers can

integrate the SDK into the Android system.

2.2 Windows SDK Environment Construction

2.2.1 XVSDK Installation

Figure 2-2 XVSDK Installation

Select the installation file according to the configuration of PC. Double click the .exe

file and click next step to complete the installation.

Figure 2-3 Installation1

Figure 2-4 Installation2

 Figure 2-5 Installation 3

 Figure 2-6 Installation 4

Figure 2-7 Installation 5

Figure 2-8 Installation 6

2.2.2 Driver Installation

1) After connecting the device with PC, open the Windows device manager.

Check the USB port as below:

Figure 2-9 Device Manager

2) Download tool "Zadig" from https://zadig.akeo.ie/downloads/zadig-2.4.exe.

Double click "Zadig": select "VSC interface" and "libusb-win32", then click

“Install Driver”.

Figure 2-10 Zadig

3) Installation successfully.

https://zadig.akeo.ie/downloads/zadig-2.4.exe

Figure 2-11 Device Manager

4) After installation, double click “all_stream.exe” (path: C:\Program

Files\xvsdk\bin). If the data and image can be achieved successfully which

means installation successfully.

Figure 2-12 Get Stream Normally

Figure 2-13 Get Image Normally

2.2.3 Windows SDK

Windows SDK contains files as below:

Figure 2-14 Windows SDK

“bin” contains windows tools and dynamic link library

“cmake” contains cmake configuration file.

“doc” contains HTML documents related to xvsdk class, interface and structures. Tool

Doxygen needs to be pre-installed.

“include” contains header file of xv-sdk.h and xv-types.h.

“lib” contains xvsdk static library.

“samples” contains xvsdk example code.

2.3 Ubuntu SDK

2.3.1 Ubuntu SDK Installation:

Supported PC version:

⚫ Ubuntu

16.04 'Xenial'

18.04 'Bionic'

20.04 'Focal'

Install xvsdk by ”deb”:

sudo apt-get update

sudo apt-get install -y g++ cmake libjpeg-dev zlib1g-dev udev libopencv-core3.2

libopencv-highgui-dev liboctomap1.8 libboost-chrono-dev libboost-thread-dev

libboost-filesystem-dev libboost-system-dev libboost-program-options-dev libboost-

date-time-dev

sudo dpkg -i xvsdk_3.2.0-20220304_bionic_amd64.deb

The file is saved in /usr/ after installation finished. Input the tool name in terminal to

run the tool. (Note: keep demo-api and pipe_srv in the same path is needed.)

Figure 2-15 Run demo-api

 Figure 2-15 Run demo-api Normally

Command “whereis” is used to find file position.

Figure 2-17 Find File Path

2.3.2 Ubuntu SDK Directory Structure

“bin” contains windows tools and dynamic link library

“include” contains header file of xv-sdk.h and xv-types.h.

“lib” contains xvsdk static library.

“share/doc” contains HTML documents related to xvsdk class, interface and

structures. Tool Doxygen needs to be pre-installed.

“share/xvsdk” contains xvsdk sample code.

“share/ros-wrapper” contains ros sdk environment.

3. Xvisio SDK Development

This chapter sequentially introduces how to develop slam, cslam, plane detection, 3dof

and other functions based on Xvisio SDK. Also introduces how to obtain camera data

such as RGB, TOF, eyetracking and how to integrate audio functions. Specific example

code can refer to "examples\xslam-edge-plus-SDK\demo\demo.cpp".

3.1 Xvisio Slam

3.1.1. Slam Mode Settings

Xvisio slam supports two modes: mix mode (part of the slam algorithm runs on the

device side, and some runs on the host side), and edge mode (the slam algorithm runs

entirely on the device side).

//enable edge mode

device->slam()->start(xv::Slam::Mode::Edge);

//enable mix mode

device->slam()->start(xv::Slam::Mode::Mixed);

3.1.2. Slam Center Point

Device's 6dof center point is on IMU (6dof's xyz means IMU's translation;

pitch/yaw/roll means IMU's rotation). After slam staring, a coordinate system will be

established based on the device's gravity direction. The origin of the coordinate

system is on IMU when slam starts (the xyz value is 0 when slam starts;

pitch/yaw/roll represent the rotation of IMU/device at that time). Refer to the figure as

below:

Figure 3-1 Start the device horizontally

Figure 3-2 Device tilted to start

3.1.3. 6dof Structure

6dof data supports 3 formats (Eulerian angle, rotation matrix, quaternion) to express

rotation, and the 6dof structure is as follows:

 struct Pose : public details::PosePred_<double> {

 Pose();

 /**

 * @brief Construct a pose with a translation, rotation, timestamps and confidence.

 */

 Pose(Vector3d const& translation, Matrix3d const& rotation,

 double hostTimestamp = std::numeric_limits<double>::infinity(), std::int64_t

edgeTimestamp = (std::numeric_limits<std::int64_t>::min)(), double c=0.);

 /**

 * @brief Prediction of the pose based on angular and linear velocity and

acceleration.

 * @param dt amount of prediction (in s)

 * @return The predicted (2nd order extrapolation) of the orientation.

 */

 Pose prediction(double dt) const;

};

The time base of hostTimestamp is the host side, start timing with the host side boot

(start timing from 0);

The time base of deviceTimestamp is the device side (glass or module), which starts

timing with device boot (start timing from 0);

Confidence is the trustworthy level of 6dof, and value 0 means slam lost.

3.1.4. Get 6dof

Mix mode supports two ways to obtain 6dof data, one is callback, and the other one is

active acquisition. The edge mode currently only supports the callback method to obtain

6dof.

1) Callback

device->slam()->registerCallback(poseCallback);

The frame rate of callback is generally determined by the frame rate of IMU (6DOF

uses IMU for fusion); if user wants to get 6dof data with prediction from callback, just

set filter_prediction value in the “ini” file.

Figure3-3 callback method

2) Active acquisition

bool getPose(Pose &pose, double prediction) ;

Developers can call this interface to actively obtain 6dof data and set the prediction

time at the same time, but it is recommended to be less than 0.016 (16ms, if the

prediction is too large, 6dof prediction may not be accurate).

Figure3-4 Get 6Dof

3.2 VIO Mode

The following interfaces are mainly used to realize the VIO function:

bool start();

bool stop();

 int registerCallback(std::function<void (xv::Pose const&)>);

bool unregisterCallback(int callbackId);

bool getPose(Pose &pose, double prediction) ;

VIO mode does not include map loopclosure. As the odometer increases, the

cumulative error will increase. In normal use, it is generally recommended that users

use cslam mode, first build a map, and then run slam. The following takes the initiative

to obtain 6dof as an example to introduce how to pass the above. The interface runs

slam, and the interface calling process is as follows:

1. Register lost callback,

2. Call start() to turn on slam,

3. Call getPose() to get 6dof,

4. Call stop() to stop slam.

For specific code, refer to demo.cpp (case 2, case 3) for further information.

3.3 CSLAM Mode

The following interfaces are mainly used to achieve CSLAM function:

bool start();

bool stop();

bool loadMapAndSwitchToCslam(std::streambuf &mapStream, std::function<void

(int)> done_callback, std::function<void (float)> localized_on_reference_map);

bool saveMapAndSwitchToCslam(std::streambuf &mapStream, std::function<void

(int, int)> done_callback, std::function<void (float)> localized_on_reference_map);

CSLAM steps:

Steps to build a map:

To build a good map, firstly you should consider how to use the map. The map must

contain all the viewpoints required by the application. If the final application is in

another room, there is no reason to record the map in the current room. Similarly, if the

final application displays some virtual objects on the ground, no need to record the other

view of the room. The path to be moved by the application should be the final path of

the recorded map. In order to ensure a good loop closure, walk on the same path twice:

for example, start from a starting point, walk away, return to the starting point, then

walk away on the same path again, and then return to the starting point. During the

recording process, walking twice on the same path ensures a good overlap between the

different recording viewpoints of the loop closure detection. During recording, it is

important to avoid moving fast or facing areas with no features.

Sample:

Refer to demon-api.cpp (case 6, case7) for code. The following is the API call process

and schematic diagram, which are introduced according to two usage scenarios:

1. Switch to cslam after mapping

API call process:

a) Call start(),register 6dof callback

device->slam()->start(xv::Slam::Mode::Mixed);

device->slam()->registerCallback(poseCallback);

b) Mapping

c) After mapping, call saveMapAndSwitchToCslam to save the map and switch to

cslam. (done_callback, localized_on_reference_map is need to register if use

callback to get 6DOF)

device->slam()->saveMapAndSwitchToCslam(mapStream, cslamSavedCallback,

cslamLocalizedCallback);

d) Call stop() to stop cslam.

device->slam()->stop();

The flow chart is shown as below:

Figure3-5 Call Process

2. Switch to CSLAM after loading the map

1) Call start(), register 6dof callback (register is needed if use callback to get 6DOF),

device->slam()->start(xv::Slam::Mode::Mixed);

device->slam()->registerCallback(poseCallback);

2) Call loadMapAndSwitchToCslam, load map and switch to cslam (register

done_callback, localized_on_reference_map if use callback to get 6DOF.)

device->slam()->loadMapAndSwitchToCslam(mapStream,

cslamSwitchedCallback, cslamLocalizedCallback);

3) Call stop() to stop CSLAM.

device->slam()->stop();

The flow chart is as follows:

Figure 3-6 Call Process

3.4 3DOF（Rotation）

If APP only needs 3DOFdata, SDK can get IMU data and then convert it to 3DOF.

3DOF structure and interface are shown as below:

class Orientation {

 Matrix3d m_rotation;

 Vector4d m_quaternions; //!< [qx,qy,qz,qw]

 Vector3D m_angularVelocity = Vector3D{0.,0.,0.};

 Vector3D m_angularAcceleration = Vector3D{0.,0.,0.};

public:

 double hostTimestamp = std::numeric_limits<double>::infinity();

 std::int64_t edgeTimestampUs = (std::numeric_limits<std::int64_t>::min)();

 Vector4d const& quaternion() const;

Orientation prediction(double dt) const;

……

};

int registerCallback(std::function<void (Orientation const &)>);

bool unregisterCallback(int callbackID);

Sample:

Refer to demon-api.cpp (case 1, case 2) for specific code.

3.5 Plane Detection (TOF/stereo)

The interface of Plane detection is shown as below:

//stereo plane detection API

Int registerStereoPlanesCallback(std::function<void (std::shared_ptr<const

std::vector<xv::Plane>>)> planeCallback);

bool unregisterStereoPlanesCallback(int callbackID);

//tof plane detection API

int registerTofPlanesCallback(std::function<void (std::shared_ptr<const

std::vector<Plane> >)> planeCallback);

bool unregisterTofPlanesCallback(int callbackId);

struct Plane {

 /// @brief Points lying on the plane.

 /// Array of 3D points lying on the plane that describes the

 /// polygon that borders the actually detected area.

 std::vector<Vector3d> points;

 /// @brief Unit vector normal to the plane

 Vector3d normal;

 /// @brief Signed distance to origin.

 /// Signed distance between the plane and the origin of the world. The distance

is

 /// signed according to the direction of the normale.

 double d;

 /// @brief Plane unique identifier

 std::string id;

};

Plane detection needs to work with SLAM, and the position of the plane is based on the

SLAM coordinate system (the world coordinate system is established with the location

of the device-IMU as the origin when slam is started);

“std::vector<Vector3d> points” represents the 3D feature points of the plane. People

can get the real detected plane area by connecting these 3D features. “int id” represents

the plane ID. The specific opinion is shown in the figure below. Totally 3 planes are

detected. By connecting 3D feature points, a specific plane area is obtained. All the

planes are based on the SLAM world coordinate system.

Figure3-7 World Coordinate System.

Sample:

Refer to demon-api.cpp (case13 and case14) for TOF plane detection. Refer to demon-

api.cpp (case23 and case24) for stereo plane detection..

3.6 Map Sharing

The interface of Map sharing is as follows:

bool start();

bool stop();

bool loadMapAndSwitchToCslam(std::streambuf &, std::function<void (int)>,

std::function<void (float)>);

Map sharing is an advanced function of CSLAM. Build map and then switch to the

SLAM function. However, compared with CSLAM, the difference is that this map can

be shared with other device. The application scenario is that multiple people can real-

time interaction in the same scene (such as a battle game, co-working). As shown in the

figure below, the core is that users are based on the same world coordinate system

(using the same map).

Figure 3-8 Map Sharing

Sample:

Refer to demon-api.cpp (case 19 and case20) for mapping code. Refer to mapdemon-

api.cpp (case21 and case22) for using code.

3.7 HID interfaces

Many control commands of device are based on HID channels. The read and write

interfaces of HID are shown as below:

bool hidWriteAndRead(const std::vector<unsigned char> &command,

std::vector<unsigned char> &result)

Sample:

Introduce how to call the HID cmd interface:

m_deviceDriver->device()->hidWriteAndRead({0x02, 0xfe, 0x20, 0x0D}, result);

3.8 Calibration Parameter API

 The SDK provides calibration parameter API of fisheye, RGB, TOF, and display. The

external coordinate (right-hand) system of all cameras is based on IMU as the origin.

Fisheye internal parameters support two types, Polynomial Distortion Model (rgb, tof)

and Unified camera model (fisheye).

Figure 3-9 Right Hand Coordinate System

The interface is as follows:

virtual const std::vector<Calibration>& calibration();

Sample:

Refer demon-api.cpp (case37) for fisheye calibration parameter. Refer demon-api.cpp

(case31) for RGB calibration parameter. Refer demon-api.cpp (case38) for TOF

calibration parameter.

3.9 HOT Plug

Interfaces of Hotplug:

int registerPlugEventCallback(const std::function<void (std::shared_ptr<Device>

device, PlugEventType type)> &Callback);

3.10 Get Fisheye Data

Fisheye frequency:

enum class ResolutionMode {

 LOW = 1, ///< Low resolution (typically QVGA)

 MEDIUM = 2, ///< Medium resolution (typically VGA)

 HIGH = 3 ///< High resolution (typically HD 720)

 };

Fisheye interfaces:

virtual int registerCallback(std::function<void (T)>) = 0;

virtual bool unregisterCallback(int callbackId) = 0;

3.11 Get RGB Data

The interface of RGB is as follows:

virtual int registerCallback(std::function<void (T)>) = 0;

virtual bool unregisterCallback(int callbackId) = 0;

Sample:

Refer to demon-api.cpp (case 9) for getting RGB data.

3.12 Get TOF Data

Introduction of TOF mode:

Frequency: single frequency (SF) | double frequency (DF)

Mode: IQ | M2 | edge

Frequency: 5-30 FPS

Different mode corresponds to different FPS (note that FPS setting items will not output

the real setting mode in some modes.

 IQ DF: 30FPS

 IQ SF: 30FPS

 M2 DF: 4.5FPS

 M2 SF: 13FPS

 M2 DF: 3.5FPS

 M2 SF: 7FPS

The interface of TOF is as follows:

virtual int registerCallback(std::function<void (T)>) = 0;

virtual bool unregisterCallback(int callbackId) = 0;

virtual bool setStreamMode(StreamMode mode);

virtual bool setDistanceMode(DistanceMode mode);

enum class StreamMode { DepthOnly = 0, CloudOnly, DepthAndCloud, None };

enum class DistanceMode { Short = 0, Middle, Long };

Sample:

Refer to demon-api (case 11, case 39,case 40) for getting RGB data.

3.13 Get RGBD Data

Interfaces of RGBD:

int registerColorDepthImageCallback(std::function<void(const DepthColorImage&)>);

virtual bool unregisterColorDepthImage(int callbackId);

struct DepthColorImage {

 std::size_t width = 0; //!< width of the image (in pixel)

 std::size_t height = 0; //!< height of the image (in pixel)

 std::shared_ptr<const std::uint8_t> data = nullptr; //! RGBD = RGB + Depth Map.

image data of RGB-D pixels : RGB (3 bytes) D (float 4bytes)

 double hostTimestamp = std::numeric_limits<double>::infinity();

};

Sample:

Note: Both enable colorCamera and TOFCamers to get RGBD data. Refer to demon-

api.cpp (case9) to get RGB data.

3.14 CNN

3.14.1 CNN Interfaces:

virtual bool setDescriptor(const std::string &filepath) = 0;

virtual bool setModel(const std::string &filepath) = 0;

virtual bool setSource(const Source &source) = 0;

virtual xv::ObjectDetector::Source getSource() const = 0;

virtual xv::ObjectDescriptor getDescriptor() const = 0;

enum class Source { LEFT = 0, RIGHT, RGB, TOF };

Sample:

Refer demon-api.cpp (case42) for CNN function.

3.10.1 Xvisio AI

➢ Dependency:

 OpenVINO Toolkit

 Download OpenVINO from https://docs.openvinotoolkit.org/latest/index.html.

Install OpenVINO and the engineering environment. The installed path is /opt/intel/.

➢ Process:

1) Get model and convert model. Get .blob model file.

Download “OpenVINO Model Zoo” from:

https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/intel/index.m

d

Use the model download tool of OpenVINO Toolkit to download:

cd /opt/intel/openvino_2021/deployment_tools/tools/model_downloader/python

downloader.py --name human-pose-estimation-0001

cd intel/human-pose-estimation-0001/

(the model format is OpenVINO IR(.bin & .xml). Take FP16 format as an example,

copy folder FP16 to workspace.)

cp -r FP16 /home/workspace/example/

cd /home/workspace/example/

Convert OpenVINO IR(.bin & .xml) to Myraid VPU(.blob), for example:

/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64/myriad_com

pile -m FP16/human-pose-estimation-0001.xml -o humanpose.blob -ip U8 -

VPU_NUMBER_OF_SHAVES 4 -VPU_NUMBER_OF_CMX_SLICES 4

 (Note: more command parameter configurations can be found on OpenVINO's official

website)

2) config.json

“config.json” is used for enable xvsdk to obtain the name of the model correctly and

the corresponding parsing method. So that to get the correct results.

https://docs.openvinotoolkit.org/latest/index.html

For example for pose detection:

{

 "model_type":"tensorflow",

 "classes":["background",

 "aeroplane", "bicycle", "bird", "boat",

 "bottle", "bus", "car", "cat", "chair",

 "cow", "diningtable", "dog", "horse",

 "motorbike", "person", "pottedplant",

 "sheep", "sofa", "train", "tvmonitor"],

 "threshold":0.45,

 "video":"video2",

 "model":"/home/baron/Desktop/xvsdk-release-

3.1.0/xvsdk/install/bin/CNN_2x8x_r14_5.blob", (absolute path of .blob)

 "source":"RGB",

 "CNN_input_flip_stereo":"true",

 "CNN_input_flip_RGB":"false",

 "CNN_input_flip_TOF":"false"

}

3) After configuring .blob and .json, put .blob and .json into the default path

(/data/down/) which set by demo-api. Run the demo-api of xvsdk. Select No.42 to

set CNN function of different cameras.

3.15 Gesture Function

3.15.1 MNN

Push MNN model file (include hand_landmark.mnn, palm_detection_pb.mnn) to

default path /etc/xvisio/gesture/. New MNN model file path can be set by setConfigPath

after pushing the model file.

21 feature points of gesture:

3.15.2 Interfaces of Gesture:

struct keypoint {

 float x = -1;

 float y = -1;

 float z = -1;

};

struct GestureData {

 int index[2] = {-1,-1};//gesture index value, left hand first and then right hand

 keypoint position[2];//position of gesture, left hand first and then right hand.

Default of zero feature points position.

 double hostTimestamp = std::numeric_limits<double>::infinity(); //start timing (0)

from host booting.

 std::int64_t edgeTimestampUs = std::numeric_limits<std::int64_t>::min();start

timing (0) from device booting

 float distance;//reserved to keep the moving distance of dynamic gesture.

 float confidence;//reserved to keep confidence。

};

virtual void setConfigPath(std::string config) = 0; //set path of MNN configuration

file

virtual int registerDynamicGestureCallback(std::function<void (GestureData

const &)>) = 0; //register dynamic gesture callback, get index value of dynamic gesture.

virtual bool UnregisterDynamicGestureCallback(int callbackID) = 0;//unregister

dynamic gesture callback

virtual int registerKeypointsCallback(std::function<void (std::shared_ptr<const

std::vector<keypoint>>)> callback) = 0;//register gesture 21Dof callback which based

on rgb coordinate system and 2D coordinate.

virtual bool unregisterKeypointsCallback(int callbackId) = 0;//unregister gesture

21Dof callback

virtual int registerSlamKeypointsCallback(std::function<void (std::shared_ptr<const

std::vector<keypoint>>)> callback) = 0;//reserved to get gesture 21Dof&3D coordinate

value which based on slam coordinate system.

virtual bool unregisterSlamKeypointsCallback(int callbackId) = 0;//reserved to

cancel the callback which based on slam coordinate system.

3.15.3 Example Code

Refer to demo-api (case 43-47) test items.

3.16 Get SGBM Data

SGBM interfaces:

virtual int registerCallback(std::function<void (T)>) = 0;

virtual bool unregisterCallback(int callbackId) = 0;

virtual Mode mode() const = 0;//set SGBM mode interface，0-Hardware，1-Software

 virtual bool start(const std::string &sgbmConfig) = 0;

 virtual bool start(const sgbm_config &sgbmConfig) = 0;

virtual bool setConfig(const std::string &sgbmConfig) = 0;

SGBM default start configuration information:

static struct xv::sgbm_config global_config = {

 0, //enable_dewarp

 3.5, //dewarp_zoom_factor

 1, //enable_disparity

 1, //enable_depth

 0, //enable_point_cloud

 0.11285, //baseline

 69, //fov

 255, //disparity_confidence_threshold

 {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0}, //homography

 0, //enable_gamma

 2.2, //gamma_value

 0, //enable_gaussian

 0, //mode

 5000, //max_distance

 100, //min_distance

};

Sample:

Get SGBM data from demon-api.cpp (case58，59)

3.17 Python-wrapper

Provide python interface to get images or parameter data of SLAM, IMU, fisheye,

RGB, TOF, SGBM and etc.

Python-wrapper only support Windows OS:

1) Install windows xvsdk, select “python-wrapper”:

Figure 3-10 XVSDK

2) The installation path \bin\python-wrapper contains PythonDemo.py.

3) Connecting the device with PC after installing python3.9, use cmd to run python.

