SHEXVISIO

TECHNOLOGY

Xvisio_SDK_Guide

v1.2/2022.03

Xvisio Confidential

Copyright and Proprietary Information Notice

Copyright © 2018 Xvisio Ltd. All right reserved. This document
contains confidential and proprietary information that is the
property of Xvisio Ltd. All other product or company names may

be trademarks of their respective owners.

Xvisio Ltd.
Room 408, building 1, N0.288, Tong Xie Road, Changning District,
Shanghai

http://www.Xvisiotech.com

http://www.xvisiotech.com/

Revision History

Version | Description Author
1.0 First version Xvisio
1.1 XVSDK 3.0.2 Xvisio

1.2 XVSDK 3.1.0 Xvisio

Contents

I 0 11 =T o VT 5
2. Environment Construction for XViSio SDKcccoovriiireneneieeecce e 5
2.1 Android SDK Environment CONSIUCTIONcccoveiriirierienieieeeeeeseeseseseeseeeeereseeseessessens 5
2.1.1 ANAroid SDK STFUCTUIEooverierveieeeeeeseee et sieee e eee e see e stestesaesseneenessessessessenes 5

2.1.2 Android BOX REQUITEMENTSccveieeeeeeeeeeeesesiesete e ese e stesse e e sese e esessesseseenes 6

2.1.3 Android Environment TeSt VEIITYcceveiriiriseeeeee s 6

2.2 Windows SDK Environment CONSLIUCLIONecuvrieieeeeeeeesisesesieeeeee e seeseeseens 7

2.3 (8] U U] 13

3. XViSiO SDK DEVEIOPIMENTccuerieieieeeeeesise ettt se et se e ssessesaesenessessensens 16
TR Y/ 1 T] o o SRR 16
3.1.1. SIam MOAE SELLNGSecveeereriertiriereeieeeeeese e se et se e e sessessesnas 16

3.1.2. S1am Center POINL........cveiiieiirireeieeeeeese sttt se s enennas 16

TR R T (o) 1 11 (1 - SR 17

TR €= o (o) SRS 18

B2 VIO IMOUE ...ttt ettt s sttt e st ese st esa et essebes s et essstesaetessstensesensasenens 20

3.3 CSLAM MOUE ...ttt sttt et s et esesbese st esaebessesensesennas 20

3.4 3DOF (ROALION) .oveveivieeieisieirieestee et e st e e a st e st e e se e stesessensesessesanens 25

3.5 Plane DeteCtion (TOF/StEIE0)vcirevierieeeeeeeresesesteste e e e sreseeseestessessesaesseseesessessens 25

3.6 IMAP SNAMING....ccuiiieiiieieeeie ettt e e st e e e e se e s e esesteste st essessensesaeneeseesensens 27

3.7 HID INEEITACES ... ititeieieieeeeees ettt ettt re st e st et e e esseneeseenensens 28

3.8 Calibration Parameter APl ...t et e re e et e e e e s e e e nneee e 28

3.9 [0 8 I o 1T 29
3.10 Get FIShEYE Data...cccccieecciie ettt ete e s ee s s e e e ae e e e e e s e e e st e e e nnneeenns 29
3.11 GEE RGB DAcciveeiiieeisieiiieisietestee st tee et ettt et e be s te s e be s ebessesensesennas 30
312 GEE TOF Dal...c.vceiiieeeiieeiiieesieisieie ettt st e st e et a ettt sebe s ebe s ebessebensesesesennas 30
313 GELRGBD Dal...c.ccucecieeisieeiiieeicieiesieee et e e te e a et sebe s te s s bessetensesessesennas 31
T80 S 1 N N TSR URUT TR 31
3,15 GESLUIE FUNCLION......ciieieeictietistes et ettt ettt e e reebesbe st et e aeae s eneeseesnesens 33
316 GELSGBIM Dala.....cceeciiiiieieiieeiesie sttt sttt sttt steete st eseestesreestesreetesteenesreennans 35

317 PYHNON-WIAPPET ...ttt ettt b et b ettt b et bt b e b 36

1. Overview

This document describes as a user guide of Xvisio SDK which mainly used to help
developers to know Xvisio SDK well and also can develop related applications (slam,
camera, audio...) quickly. This document is mainly divided into two parts: SDK
environment construction and sample code introduction.

Currently Xvisio SDK supports 3 platforms: Android, Ubuntu and Windows. The
mainly difference between these 3 platforms is that .so is compiled separately, but API
is the same. Section 2 introduces how to install/use Xvisio SDK with these 3 platforms.
Section 3 describes how to call the SDK API to achieve different functions for all

platforms.

2. Environment Construction for Xvisio SDK

This chapter sequentially introduces how to install and use Xvisio SDK on Android,

Ubuntu and Windows platforms. And also related precautions are included.

2.1 Android SDK Environment Construction

2.1.1 Android SDK Structure

Android SDK structure is shown as below:

T b
J])
android bin doc examples include libs unity-wrap Changelo deploy-ar = deploy-ar
per g m64-vBa.s | meabi-v7a
h .sh

Figure2-1 SDK Structure
The folder ""Android™ contains the makefile compiled by NDK. If user modify the
demo code in the samples folder, user can use "ndk-build -j 5" to compile and generate
the corresponding executable file. The compiled file path is in /Android/libs/ arm64-
v8a (armeabi-v7a).
File “bin” is the tool of 64bit and 32bit.
File “doc” contains definition file of class and interfaces.

Folder “examples” is our demo code, mainly describes how to use our SDK API.

The ""include'* folder is the header file of the SDK API.

The folder “libs” contains "SDK so" files. "arm64-v8a™ is a 64bit library, and "armeabi-
v7a" is a 32bit library.

"deploy.sh™ is a push script file. Executing "./deploy-arm64-v8a.sh" will push the
64bit library to the Android platform; executing "./deploy-armeabi-v7a.sh” will push
the 32bit library to the Android platform, Modify the *'libdir™ in deploy.sh to modify
the push lib path.

2.1.2 Android Box Requirements

® The Android OS version should be above (include) 7;

® Developers need to confirm that the Android kernel supports HID and UVC
modules first. If not, kernel needs to be recompiled and also add HID&UVC
modules should be added:;

® Android OS is userdebug version;

® If only slam function is needed, usb2.0 can satisfy the demand. For complete

functions (slam, RGB, TOF, audio), usb3.0 is needed.

2.1.3 Android Environment Test Verify

We took Android native system box as an example to introduce how to test and verify
Xvisio Android SDK.

Connect the box with PC after powered on. Execute the following commands to push
Xvisio SDK to box:

adb root

adb remount

cd android_xxx_sdk

adb push libs /data/test/

adb push bin /data/test/

Execute the following commands after connecting:

Isusb (make sure whether the device can be found. if the terminal shows f408 which
means the device has been connected with box successfully.)

adb shell

cd /data/test/bin/armé64-v8a/

LD LIBRARY PATH-=../../libs/ arm64-v8a/ ./demo-api

Open a new terminal: adb shell, cd /data/test/bin/armé64-v8a/,

LD LIBRARY PATH-=../../libs/ arm64-v8a/ ./pipe_srv

The test verification steps of Android SDK is to refer to the test command and input
the command successively (input 1 to obtain 3DOF data, input 2 to obtain 6DOF data...)
If the 3dof, 6dof and other sensor data can be obtained normally in the end which means
there is no problem with the Android environment, and subsequent developers can

integrate the SDK into the Android system.

2.2 Windows SDK Environment Construction

2.2.1 XVSDK Installation

& XVSDE-3.0.2-msvc2017-xb4d.exe
% XVSDE-3.0.2-msvc2017-xBb.exe
& XVSDK-3.0.2-msvc2019-xb4.exe
e XVSDK-3.0.2-msvc2019-x8b.exe

Figure 2-2 XVSDK Installation
Select the installation file according to the configuration of PC. Double click the .exe

file and click next step to complete the installation.

2 xvsdk Setup

Welcome to xvsdk Setup

Setup will guide you through the installation of xvsdk.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your

computer.

Click Next to continue.

Next > Cancel

Figure 2-3 Installation1

2 xvsdk Setup
License Agreement

Please review the license terms before installing xvsdk.

Press Page Down to see the rest of the agreement.

Copyright (c) 2018 Xvisio Technology Corp, all rights reserved

=

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT, IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR

ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR

OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR v

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install xvsdk.

<Back Cancel

Figure 2-4 Installation2

M xvsdk Setup _

Choose Install Location
Choose the folder in which to install xvsdk.

Setup will install xvsdk in the following folder. To install in a different folder, dick Browse and
select another folder. Click Next to continue.

Destination Folder
|C:‘Prog*am Files\evsdk| Browse...

Space required: 142.4MB
Space available: 30.7 GB

Mullsoft Install System v3.08

<Back | Next> " Cancel

Figure 2-5 Installation 3

X xvsdk Setup -

Choose Start Menu Folder
Choose a Start Menu folder for the xvsdk shortcuts.

Select the Start Menu folder in which you would like to create the program’s shortcuts. You
can also enter a name to create a new folder.,

wvsdk

Accessibility A
Accessories

Administrative Tools

Agilent Technologies

Anaconda2 (64-bit)

Clean Master

ClodoworkMod

Daum

EPSON

hik

Imatest v

[]Do not create shortcuts

Mullsaft Install System +3.08

<Back | Next> | | Cancel

Figure 2-6 Installation 4

xvsdk Setup - s

Choose Components

Choose which features of xvsdk you want to install.

Chedk the components you want to install and unchedk the components you don't want to
install. Click Install to start the installation.

Select the type of install: Full i
Or, select the optional [¥] Binaries
components you wish to (7l CMake
install: = .
|| Documentation
[¥] Headers
[¥] Libraries
[] python_wrapper
[¥] Redist
7 -
Space required: 142.4MB — Runtime
|v| Samples

< Back Cance

Figure 2-7 Installation 5

wvsdk Setup —

Completing xvsdk Setup

xvsdk has been installed on your computer.

Click Finish to dose Setup.

Figure 2-8 Installation 6

2.2.2 Driver Installation

1) After connecting the device with PC, open the Windows device manager.

Check the USB port as below:

M Device Manager
File Action View Help
= m HEm B

~ & DESKTOP-1LGPF
i Audio inputs and outputs
@ Batteries
& Biometric devices
© Bluetooth
v Q Cameras

w= Disk drives

I Display adapters

¥ rirmware

% Human Interface Devices

*® IDE ATA/ATAP! controllers

<% Imaging devices

= Intel(R) Dynamic Platform and Thermal Framework

= Keyboards

‘ Mice and other pointing devices

8 Monitors

& Network adapters
~ K2 Qtherdevices

= Print queues

= Printers
u Processors
B Software devices
i Sound, video and game controllers
S Storage controllers
= System devices
v @ Universal Serial Bus controllers
i Intel(R) USB 3.0 eXtensible Host Controller - 1.0 (Microsoft)

Intel(R) USB 3.1 eXtensible Host Controller - 1.10 (Microsoft)
B USB Composite Device

9§ USB Composite Device

i USB Composite Device

§ USB Root Hub (USB 3.0)

§ USB Root Hub (USB 3.0)
§ USB Connector Managers

§ UCSI USB Connector Manager
= WSD Print Provider

<

Figure 2-9 Device Manager

2) Download tool "Zadig" from https.//zadig.akeo.ie/downloads/zadig-2.4.exe.

Double click "Zadig": select "VSC interface" and "libusb-win32", then click

“Install Driver”.

K2 Zadig _ %
Device Options Help

VSC interface (Interface 0) Pl eat
Driver [(NONE)] = ‘ libusb-win32 (v1.2.6.0) z More Information

' WinUSB (ibusb)
s o Jram [.
wcim 2 @ Install Driver v libusbK

1 device found.

Figure 2-10 Zadig

3) Installation successfully.

https://zadig.akeo.ie/downloads/zadig-2.4.exe

M Device Manager
File Action View Help

- 7]

& DESKTOP-1LLGPF
i Audio inputs and outputs
& Batteries
Biometric devices
© Bluetooth
v @ Cameras

& Integrated Webcam
3 Computer
= Disk drives
@l Display adapters
B Firmware
¥ Human Interface Devices
*® |DE ATA/ATAPI controllers
3 Imaging devices
E= Intel(R) Dynamic Platform and Thermal Framework
=2 Keyboards
§_libusb-win32 devices
Mice and other pointing devices
3 Monitors
@ Network adapters
= Print queues
M Printers
[Processors
§ Software devices
i Sound, video and game controllers
S Storage controllers
Em System devices
~ @ Universal Serial Bus controllers
§ IntelR) USB 3.0 eXtensible Host Controller - 1.0 (Microsoft)

Intel(R) USB 3. eXtensible Host Controller - 1.10 (Microsoft)
§ USB Composite Device
USE Composite Device

§ USB Composite Device
§ USB Root Hub (USB 30)
§ USB Root Hub (USB 30)
~ § USB Connector Managers
§ UCSI USB Connector Manager

Figure 2-11 Device Manager

"

4) After installation, double click “all_stream.exe” (path: C:\Program
Files\xvsdk\bin). If the data and image can be achieved successfully which

means installation successfully.

== Initia

lized
HHAHHRR R R A

Figure 2-12 Get Stream Normally

Figure 2-13 Get Image Normally
2.2.3 Windows SDK

Windows SDK contains files as below:

OS (C:) » Program Files > xvsdk >

~

I T

bin cmake doc include lib samples Uninstall.e
xe

Figure 2-14 Windows SDK
“bin” contains windows tools and dynamic link library
“cmake” contains cmake configuration file.
“doc” contains HTML documents related to xvsdk class, interface and structures. Tool
Doxygen needs to be pre-installed.
“include” contains header file of xv-sdk.h and xv-types.h.
“lib” contains xvsdk static library.

“samples” contains xvsdk example code.

2.3 Ubuntu SDK

2.3.1 Ubuntu SDK Installation:

Supported PC version:
® Ubuntu

16.04 'Xenial'

18.04 'Bionic'

20.04 'Focal'

Install xvsdk by “deb”:

sudo apt-get update

sudo apt-get install -y g++ cmake libjpeg-dev zliblg-dev udev libopencv-core3.2
libopencv-highgui-dev liboctomap1.8 libboost-chrono-dev libboost-thread-dev
libboost-filesystem-dev libboost-system-dev libboost-program-options-dev libboost-
date-time-dev

sudo dpkg -i xvsdk_3.2.0-20220304_bionic_amd64.deb

The file is saved in /usr/ after installation finished. Input the tool name in terminal to

run the tool. (Note: keep demo—api and pipe srv in the same path is needed.)

baron@baron-VirtualBox: ~

File Edit View Search Terminal Help

baron@baron-VirtualBox:~5 demo-api
create server recv pipe
create server send pipe

Figure 2-15 Run demo—api

baron@baron-VirtualBox: ~
File Edit View Search Terminal Help
baron@baron-VirtualBox:~$ pipe_srv
pipe server recv has already exist
pipe server send has already exist
wait for client connect....
pipe server get send handle: 3
pipe server get recv handle: 4
ready handle: send:3,recv:4

Init SDK and get IMU
: Stop get IMU, start slam, get 6dof
: Stop slam, stop get 6dof, get IMU
: Get eyetracking data, stop get IMU
: Stop get eyetracking data, get IMU
: Stop get IMU, get rgb data
: Stop rgb, get IMU
: Stop get IMU, get tof data
: Stop tof, get IMU
: Start tof plane detection, start slam, stop get IMU, get 6dof
: Stop tof plane detection, stop slam, get IMU
: Stop get IMU, switch to edge mode, get edge 6dof
: Stop get edge 6dof, switch to mixed mode, get IMU

Figure 2-15 Run demo—api Normally
Command “whereis” is used to find file position.

baron@baron-VirtualBox: ~
File Edit View Search Terminal Help
baron@baron-VirtualBox:~5 whereis demo-api
demo-api: fusr/bin/demo-apl
baron@baron-vVirtualBox:~% whereis xvsdk.so

xvsdk: Jusr/include/xvsdk Jusr/share/xvsdk
baron@baron-VirtualBox:~$

Figure 2-17 Find File Path

2.3.2 Ubuntu SDK Directory Structure

“bin” contains windows tools and dynamic link library

“include” contains header file of xv-sdk.h and xv-types.h.

“lib” contains xvsdk static library.

“share/doc” contains HTML documents related to xvsdk class, interface and
structures. Tool Doxygen needs to be pre-installed.

“share/xvsdk” contains xvsdk sample code.

“share/ros-wrapper” contains ros sdk environment.

3. Xvisio SDK Development
This chapter sequentially introduces how to develop slam, cslam, plane detection, 3dof
and other functions based on Xvisio SDK. Also introduces how to obtain camera data
such as RGB, TOF, eyetracking and how to integrate audio functions. Specific example

code can refer to "examples\xslam-edge-plus-SDK\demo\demo.cpp™.

3.1 Xvisio Slam

3.1.1. Slam Mode Settings

Xvisio slam supports two modes: mix mode (part of the slam algorithm runs on the
device side, and some runs on the host side), and edge mode (the slam algorithm runs
entirely on the device side).

//enable edge mode

device->slam()->start(xv::Slam::Mode::Edge);

//enable mix mode

device->slam()->start(xv::Slam::Mode::Mixed);
3.1.2. Slam Center Point

Device's 6dof center point is on IMU (6dof's xyz means IMU's translation;
pitch/yaw/roll means IMU's rotation). After slam staring, a coordinate system will be
established based on the device's gravity direction. The origin of the coordinate

system is on IMU when slam starts (the xyz value is 0 when slam starts;

pitch/yaw/roll represent the rotation of IMU/device at that time). Refer to the figure as

below:

Abs(m). - x=0.004 y=0.014 2=0.005
hbs(dea) pitch=7.620 yaw=3.344 roll=2.093

Figure 3-1 Start the device horizontally

x=-0.009 y=-0.002 2=0.001

|Abs(deg) pitch=-4.100 yaw=-5.016 roll=-41.376

Figure 3-2 Device tilted to start

3.1.3. 6dof Structure

6dof data supports 3 formats (Eulerian angle, rotation matrix, quaternion) to express
rotation, and the 6dof structure is as follows:
struct Pose : public details::PosePred_<double> {
Pose();
/**
* @brief Construct a pose with a translation, rotation, timestamps and confidence.

*/

Pose(Vector3d const& translation, Matrix3d const& rotation,
double hostTimestamp = std::numeric_limits<double>::infinity(), std::int64_t

edgeTimestamp = (std::numeric_limits<std::int64_t>::min)(), double c=0.);

J¥*

* @brief Prediction of the pose based on angular and linear velocity and
acceleration.

* @param dt amount of prediction (in s)

* @return The predicted (2nd order extrapolation) of the orientation.

*/

Pose prediction(double dt) const;
2
The time base of hostTimestamp is the host side, start timing with the host side boot
(start timing from 0);
The time base of deviceTimestamp is the device side (glass or module), which starts
timing with device boot (start timing from 0);

Confidence is the trustworthy level of 6dof, and value 0 means slam lost.

3.1.4. Get 6dof

Mix mode supports two ways to obtain 6dof data, one is callback, and the other one is
active acquisition. The edge mode currently only supports the callback method to obtain
6dof.

1) Callback

device->slam()->registerCallback(poseCallback);

The frame rate of callback is generally determined by the frame rate of IMU (6DOF
uses IMU for fusion); if user wants to get 6dof data with prediction from callback, just

set filter prediction value in the “ini” file.

Start slam

-
L

Lost slam callback

> 6Dof callback

In VIO mode

v

2) Active acquisition

Figure3-3 callback method

bool getPose(Pose &pose, double prediction) ;
Developers can call this interface to actively obtain 6dof data and set the prediction
time at the same time, but it is recommended to be less than 0.016 (16ms, if the

prediction is too large, 6dof prediction may not be accurate).

Start slam
> Lost slam callback

In VIO mode

Get 6Dof

g While(!stop}{
device->slam()->getPose(pose)

}

h 4

Figure3-4 Get 6Dof

3.2 VIO Mode

The following interfaces are mainly used to realize the VIO function:

bool start();

bool stop();

int registerCallback(std::function<void (xv::Pose const&)>);

bool unregisterCallback(int callbackld);

bool getPose(Pose &pose, double prediction) ;

VIO mode does not include map loopclosure. As the odometer increases, the
cumulative error will increase. In normal use, it is generally recommended that users
use cslam mode, first build a map, and then run slam. The following takes the initiative
to obtain 6dof as an example to introduce how to pass the above. The interface runs
slam, and the interface calling process is as follows:

1. Register lost callback,

2. Call start() to turn on slam,

3. Call getPose() to get 6dof,

4. Call stop() to stop slam.

For specific code, refer to demo.cpp (case 2, case 3) for further information.

3.3 CSLAM Mode

The following interfaces are mainly used to achieve CSLAM function:

bool start();

bool stop();

bool loadMapAndSwitchToCslam(std::streambuf &mapStream, std::function<void
(int)> done_callback, std::function<void (float)> localized_on_reference_map);
bool saveMapAndSwitchToCslam(std::streambuf &mapStream, std::function<void
(int, int)> done_callback, std::function<void (float)> localized_on_reference_map);
CSLAM steps:

Steps to build a map:

To build a good map, firstly you should consider how to use the map. The map must
contain all the viewpoints required by the application. If the final application is in
another room, there is no reason to record the map in the current room. Similarly, if the
final application displays some virtual objects on the ground, no need to record the other
view of the room. The path to be moved by the application should be the final path of
the recorded map. In order to ensure a good loop closure, walk on the same path twice:
for example, start from a starting point, walk away, return to the starting point, then
walk away on the same path again, and then return to the starting point. During the
recording process, walking twice on the same path ensures a good overlap between the
different recording viewpoints of the loop closure detection. During recording, it is
important to avoid moving fast or facing areas with no features.
Sample:
Refer to demon-api.cpp (case 6, case7) for code. The following is the API call process
and schematic diagram, which are introduced according to two usage scenarios:
1. Switch to cslam after mapping
API call process:
a) Call start(),register 6dof callback
device->slam()->start(xv::Slam::Mode::Mixed);
device->slam()->registerCallback(poseCallback);
b) Mapping
c) After mapping, call saveMapAndSwitchToCslam to save the map and switch to
cslam. (done_callback, localized_on_reference_map is need to register if use
callback to get 6DOF)
device->slam()->saveMapAndSwitchToCslam(mapStream, cslamSavedCallback,
cslamlocalizedCallback);
d) Call stop() to stop cslam.
device->slam()->stop();

The flow chart is shown as below:

Lost slam callback

In VIO mode

Get 6Dof
while(Istop){
device->slam()->getPose(pose)
H

or

6Dof callback

Finish building map Save map successfully
saveMapAndSwitchToCslam() The save map callback been triggered

Lost slam callback

In Cslam mode

Get 6Dof
while(lstop){
device->slam()->getPose(pose)
}

or

6Dof callback

done_callback

localized on_reference_map

Stop slam

Figure3-5 Call Process

2. Switch to CSLAM after loading the map

1) Call start(), register 6dof callback (register is needed if use callback to get 6DOF),
device->slam()->start(xv::Slam::Mode::Mixed);
device->slam()->registerCallback(poseCallback);

2) Call loadMapAndSwitchToCslam, load map and switch to cslam (register
done_callback, localized_on_reference_map if use callback to get 6DOF.)
device->slam()->loadMapAndSwitchToCslam(mapStream,
cslamSwitchedCallback, cslamlLocalizedCallback);

3) Call stop() to stop CSLAM.
device->slam()->stop();

The flow chart is as follows:

Lost slam callback

In VIO mode

Get 6Dof
while(!stop}{
device->slam()->getPose(pose)

}

or

6Dof callback

Load map successfully

loadMapAndSwitchToCsl
oadMapAndswitchToCslam() The load map callback been triggered

Lost slam callback

In Cslam mode

Get 6Dof

while(1stop}{
device->slam()->getPose(pose)

}

or

6Dof callback

done_callback

localized on reference _map

Stop slam

Figure 3-6 Call Process

3.4 3DOF (Rotation)

If APP only needs 3DOFdata, SDK can get IMU data and then convert it to 3DOF.
3DOF structure and interface are shown as below:
class Orientation {

Matrix3d m_rotation;

Vectordd m_quaternions; //'< [gx,qy,qz,qw]

Vector3D m_angularVelocity = Vector3D{0.,0.,0.};

Vector3D m_angularAcceleration = Vector3D{0.,0.,0.};

public:
double hostTimestamp = std::numeric_limits<double>::infinity();
std::int64_t edgeTimestampUs = (std::numeric_limits<std::int64_t>::min)();
Vector4d const& quaternion() const;
Orientation prediction(double dt) const;
}

int registerCallback(std::function<void (Orientation const &)>);
bool unregisterCallback(int callbackID);
Sample:

Refer to demon-api.cpp (case 1, case 2) for specific code.

3.5 Plane Detection (TOF/stereo)

The interface of Plane detection is shown as below:

//stereo plane detection API

Int registerStereoPlanesCallback(std::function<void (std::shared_ptr<const
std::vector<xv::Plane>>)> planeCallback);

bool unregisterStereoPlanesCallback(int callbackID);

//tof plane detection API

int registerTofPlanesCallback(std::function<void (std::shared_ptr<const
std::vector<Plane> >)> planeCallback);
bool unregisterTofPlanesCallback(int callbackld);
struct Plane {

/// @brief Points lying on the plane.

/// Array of 3D points lying on the plane that describes the

/// polygon that borders the actually detected area.

std::vector<Vector3d> points;

/// @brief Unit vector normal to the plane

Vector3d normal;

/// @brief Signed distance to origin.

/// Signed distance between the plane and the origin of the world. The distance
is

/// signed according to the direction of the normale.

double d;

/// @brief Plane unique identifier

std::string id;

I

Plane detection needs to work with SLAM, and the position of the plane is based on the
SLAM coordinate system (the world coordinate system is established with the location
of the device-IMU as the origin when slam is started);
“std::vector<Vector3d> points” represents the 3D feature points of the plane. People
can get the real detected plane area by connecting these 3D features. “int id” represents
the plane ID. The specific opinion is shown in the figure below. Totally 3 planes are
detected. By connecting 3D feature points, a specific plane area is obtained. All the

planes are based on the SLAM world coordinate system.

Figure3-7 World Coordinate System.

Sample:
Refer to demon-api.cpp (casel3 and casel4) for TOF plane detection. Refer to demon-

api.cpp (case23 and case24) for stereo plane detection..

3.6 Map Sharing

The interface of Map sharing is as follows:

bool start();

bool stop();

bool loadMapAndSwitchToCslam(std::streambuf &, std::function<void (int)>,
std::function<void (float)>);
Map sharing is an advanced function of CSLAM. Build map and then switch to the
SLAM function. However, compared with CSLAM, the difference is that this map can
be shared with other device. The application scenario is that multiple people can real-
time interaction in the same scene (such as a battle game, co-working). As shown in the

figure below, the core is that users are based on the same world coordinate system

(using the same map).

Figure 3-8 Map Sharing
Sample:
Refer to demon-api.cpp (case 19 and case20) for mapping code. Refer to mapdemon-

api.cpp (case21 and case22) for using code.

3.7 HID interfaces

Many control commands of device are based on HID channels. The read and write
interfaces of HID are shown as below:

bool hidWriteAndRead(const std::vector<unsigned char> &command,

std::vector<unsigned char> &result)

Sample:
Introduce how to call the HID cmd interface:
m_deviceDriver->device()->hidWriteAndRead({0x02, Oxfe, 0x20, 0x0D}, result);

3.8 Calibration Parameter API

The SDK provides calibration parameter API of fisheye, RGB, TOF, and display. The
external coordinate (right-hand) system of all cameras is based on IMU as the origin.
Fisheye internal parameters support two types, Polynomial Distortion Model (rgb, tof)

and Unified camera model (fisheye).

> x

right hand

V'\.-'

Figure 3-9 Right Hand Coordinate System
The interface is as follows:

virtual const std::vector<Calibration>& calibration();
Sample:
Refer demon-api.cpp (case37) for fisheye calibration parameter. Refer demon-api.cpp

(case31) for RGB calibration parameter. Refer demon-api.cpp (case38) for TOF

calibration parameter.

3.9HOT Plug

Interfaces of Hotplug:
int registerPlugEventCallback(const std::function<void (std::shared_ptr<Device>

device, PlugEventType type)> &Callback);

3.10 Get Fisheye Data

Fisheye frequency:

enum class ResolutionMode {
LOW =1, ///< Low resolution (typically QVGA)
MEDIUM = 2, ///< Medium resolution (typically VGA)
HIGH = 3 ///< High resolution (typically HD 720)

}

Fisheye interfaces:
virtual int registerCallback(std::function<void (T)>) = 0;

virtual bool unregisterCallback(int callbackld) = 0;

3.11 Get RGB Data

The interface of RGB is as follows:

virtual int registerCallback(std::function<void (T)>) = 0;
virtual bool unregisterCallback(int callbackld) = 0;
Sample:

Refer to demon-api.cpp (case 9) for getting RGB data.

3.12 Get TOF Data

Introduction of TOF mode:
Frequency: single frequency (SF) | double frequency (DF)
Mode: 1Q | M2 | edge
Frequency: 5-30 FPS
Different mode corresponds to different FPS (note that FPS setting items will not output
the real setting mode in some modes.

IQ DF: 30FPS

IQ SF: 30FPS

M2 DF: 4.5FPS

M2 SF: 13FPS

M2 DF: 3.5FPS

M2 SF: 7FPS
The interface of TOF is as follows:
virtual int registerCallback(std::function<void (T)>) = 0;
virtual bool unregisterCallback(int callbackld) = 0;

virtual bool setStreamMode(StreamMode mode);

virtual bool setDistanceMode(DistanceMode mode);

enum class StreamMode { DepthOnly = 0, CloudOnly, DepthAndCloud, None };
enum class DistanceMode { Short = 0, Middle, Long };

Sample:

Refer to demon-api (case 11, case 39,case 40) for getting RGB data.

3.13 Get RGBD Data

Interfaces of RGBD:
int registerColorDepthimageCallback(std::function<void(const DepthColorimage&)>);
virtual bool unregisterColorDepthimage(int callbacklid);
struct DepthColorimage {

std::size_t width = 0; //'< width of the image (in pixel)

std::size_t height = 0; /1< height of the image (in pixel)

std::shared_ptr<const std::uint8_t> data = nullptr; /! RGBD = RGB + Depth Map.
image data of RGB-D pixels : RGB (3 bytes) D (float 4bytes)

double hostTimestamp = std::numeric_limits<double>::infinity();
h
Sample:
Note: Both enable colorCamera and TOFCamers to get RGBD data. Refer to demon-
api.cpp (case9) to get RGB data.

3.14 CNN

3.14.1 CNN Interfaces:

virtual bool setDescriptor(const std::string &filepath) = 0;
virtual bool setModel(const std::string &filepath) = 0;
virtual bool setSource(const Source &source) = 0;

virtual xv::ObjectDetector::Source getSource() const = 0;
virtual xv::ObjectDescriptor getDescriptor() const = 0;

enum class Source { LEFT =0, RIGHT, RGB, TOF };

Sample:

Refer demon-api.cpp (case42) for CNN function.
3.10.1 Xvisio Al
» Dependency:
OpenVINO Toolkit

Download OpenVINO from https://docs.openvinotoolkit.org/latest/index.html.

Install OpenVINO and the engineering environment. The installed path is /opt/intel/.
» Process:

1) Get model and convert model. Get .blob model file.

Download “OpenVINO Model Z00” from:

https://github.com/openvinotoolkit/open_model zoo/blob/master/models/intel/index.m

d

Use the model download tool of OpenVINO Toolkit to download:

cd /opt/intel/openvino_2021/deployment_tools/tools/model_downloader/python
downloader.py --name human-pose-estimation-0001

cd intel/human-pose-estimation-0001/

(the model format is OpenVINO IR(.bin & .xml). Take FP16 format as an example,
copy folder FP16 to workspace.)

cp -r FP16 /home/workspace/example/

cd /home/workspace/example/

Convert OpenVINO IR(.bin & .xml) to Myraid VPU(.blob), for example:
/opt/intel/openvino_2021/deployment_tools/inference_engine/lib/intel64/myriad_com
pile -m FP16/human-pose-estimation-0001.xml -o humanpose.blob -ip U8 -
VPU_NUMBER_OF_SHAVES 4 -VPU_NUMBER_OF_CMX_SLICES 4

(Note: more command parameter configurations can be found on OpenVINO's official
website)

2) config.json

“config.json” is used for enable xvsdk to obtain the name of the model correctly and

the corresponding parsing method. So that to get the correct results.

https://docs.openvinotoolkit.org/latest/index.html

For example for pose detection:

{
"model_type":"tensorflow",
"classes™:["background”,
"aeroplane", "bicycle", "bird", "boat",
"bottle”, "bus"”, "car", "cat", "chair",

"cow",

diningtable”, "dog", "horse",
"motorbike", "person”, "pottedplant™,

"sheep”, "sofa", "train", "tvmonitor"],

"threshold":0.45,

"video":"video2",
"model":"/home/baron/Desktop/xvsdk-release-
3.1.0/xvsdk/install/bin/CNN_2x8x_r14 5.blob", (absolute path of .blob)
"source":"RGB",
"CNN_input_flip_stereo™:"true",
"CNN_input_flip_RGB":"false",
"CNN_input_flip_ TOF":"false"
}
3) After configuring .blob and .json, put .blob and .json into the default path
(/data/down/) which set by demo-api. Run the demo-api of xvsdk. Select No.42 to

set CNN function of different cameras.

3.15 Gesture Function

3.15.1 MNN
Push MNN model file (include hand_landmark.mnn, palm_detection_pb.mnn) to
default path /etc/xvisio/gesture/. New MNN model file path can be set by setConfigPath

after pushing the model file.
21 feature points of gesture:

B *16 0. WRIST 11. MIDDLE_FINGER_DIP
y 1t 1. THUMB_CMC 12. MIDDLE_FINGER_TIP
7 o |15 2. THUMB_MCP 13. RING_FINGER_MCP
6% 101 ¢, 20 3. THUMBIP 14. RING_FINGER_PIP
. - %19 4. THUMB_TIP 15. RING_FINGER_DIP
4 19 5 M8 5. INDEX_FINGER_.MCP 16 RING_FINGER_TIP
3® 17 6. INDEX_FINGER_PIP 17. PINKY_MCP
. 7. INDEX_FINGER_DIP 18. PINKY_PIP
2 8. INDEX_FINGER_TIP 19. PINKY_DIP
1o 9. MIDDLE_FINGER_MCP 20. PINKY_TIP
Yo 10. MIDDLE_FINGER_PIP

fig 2. 21 hand landmarks.

3.15.2 Interfaces of Gesture:

struct keypoint {

float x = -1;
floaty = -1;
floatz =-1;

h
struct GestureData {
int index[2] = {-1,-1};//gesture index value, left hand first and then right hand
keypoint position[2];//position of gesture, left hand first and then right hand.
Default of zero feature points position.
double hostTimestamp = std::numeric_limits<double>::infinity(); //start timing (0)
from host booting.
std::int64_t edgeTimestampUs = std::numeric_limits<std::int64_t>::min();start
timing (0) from device booting
float distance;//reserved to keep the moving distance of dynamic gesture.
float confidence;//reserved to keep confidence.
h
virtual void setConfigPath(std::string config) = 0; //set path of MNN configuration
file
virtual int registerDynamicGestureCallback(std::function<void (GestureData
const &)>) = 0; //register dynamic gesture callback, get index value of dynamic gesture.

virtual bool UnregisterDynamicGestureCallback(int callbacklD) = 0;//unregister

dynamic gesture callback
virtual int registerKeypointsCallback(std::function<void (std::shared_ptr<const
std::vector<keypoint>>)> callback) = 0;//register gesture 21Dof callback which based
on rgb coordinate system and 2D coordinate.
virtual bool unregisterKeypointsCallback(int callbackld) = 0;//unregister gesture
21Dof callback
virtual int registerSlamKeypointsCallback(std::function<void (std::shared_ptr<const
std::vector<keypoint>>)> callback) = 0;//reserved to get gesture 21Dof&3D coordinate
value which based on slam coordinate system.
virtual bool unregisterSlamKeypointsCallback(int callbackld) = 0;//reserved to
cancel the callback which based on slam coordinate system.
3.15.3 Example Code

Refer to demo-api (case 43-47) test items.

3.16 Get SGBM Data

SGBM interfaces:
virtual int registerCallback(std::function<void (T)>) = 0;
virtual bool unregisterCallback(int callbackld) = 0;
virtual Mode mode() const = 0;//set SGBM mode interface, 0-Hardware, 1-Software
virtual bool start(const std::string &sgbmConfig) = 0;
virtual bool start(const sgbm_config &sgbmConfig) = 0;
virtual bool setConfig(const std::string &sgbmConfig) = 0;
SGBM default start configuration information:
static struct xv::sgbm_config global_config = {

0, /lenable_dewarp

3.5, //[dewarp_zoom_factor

1, /lenable_disparity

1, /lenable_depth

0, /lenable_point_cloud

0.11285, //baseline

69, //fov

255, //disparity_confidence_threshold

{1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0}, //homography
0, //lenable_gamma

2.2, ll[gamma_value

0, //enable_gaussian

0, //mode

5000, //max_distance

100, //min_distance

Sample:

Get SGBM data from demon-api.cpp (case58, 59)

3.17 Python-wrapper

Provide python interface to get images or parameter data of SLAM, IMU, fisheye,
RGB, TOF, SGBM and etc.
Python-wrapper only support Windows OS:

1) Install windows xvsdk, select “python-wrapper”:

O wvsdlk =2 — -

xEArt
A IFAEEAERT ovsdk THECERM -

E’jﬁﬁi*ﬂﬁﬁmiﬂ i FHEL Iél"-_l WT*EE%E’]E% i [FEI] Fias
elect pyt on Wrapper

R zamx >

i, BEXETETSE [[Binaries

Eﬂ%f’-‘r—i Make

Headers

. Libraries

[prthon_wrapper
T RTITET

Funtime
FREETE(E]: 135.3 MB [*] Samples

< P& FEI BiH(C)

- — — S

Figure 3-10 XVSDK
2) The installation path \bin\python-wrapper contains PythonDemao.py.
3) Connecting the device with PC after installing python3.9, use cmd to run python.

